Copied to
clipboard

G = C42.281C23order 128 = 27

142nd non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.281C23, C4⋊C4SD16, C4○D87C4, D812(C2×C4), D8⋊C44C2, C4⋊C4.404D4, Q1612(C2×C4), C4.154(C4×D4), Q16⋊C44C2, SD1612(C2×C4), (C4×SD16)⋊52C2, C8.24(C22×C4), C4.29(C23×C4), C22.22(C4×D4), C4⋊C4.369C23, C82M4(2)⋊9C2, (C2×C8).420C23, (C4×C8).289C22, (C2×C4).209C24, C22⋊C4.191D4, C2.7(D4○SD16), D4.11(C22×C4), (C4×D4).60C22, C23.441(C2×D4), Q8.11(C22×C4), (C4×Q8).56C22, (C2×D4).377C23, (C2×D8).160C22, (C2×Q8).350C23, C8⋊C4.116C22, C4.Q8.129C22, C23.36D439C2, (C22×C4).930C23, (C22×C8).252C22, (C2×Q16).155C22, C22.153(C22×D4), D4⋊C4.199C22, C23.33C236C2, Q8⋊C4.200C22, (C2×SD16).178C22, C42⋊C2.300C22, (C2×M4(2)).356C22, C2.69(C2×C4×D4), (C2×C8)⋊17(C2×C4), C4○D46(C2×C4), (C2×C4.Q8)⋊8C2, C4.17(C2×C4○D4), (C2×C4○D8).16C2, (C2×C4).916(C2×D4), (C2×C4).268(C4○D4), (C2×C4⋊C4).577C22, (C2×C4).268(C22×C4), (C2×C4○D4).90C22, SmallGroup(128,1684)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C42.281C23
C1C2C22C2×C4C22×C4C42⋊C2C23.33C23 — C42.281C23
C1C2C4 — C42.281C23
C1C22C42⋊C2 — C42.281C23
C1C2C2C2×C4 — C42.281C23

Generators and relations for C42.281C23
 G = < a,b,c,d,e | a4=b4=1, c2=a2, d2=e2=b2, ab=ba, ac=ca, ad=da, eae-1=ab2, cbc-1=dbd-1=b-1, be=eb, dcd-1=bc, ece-1=b2c, de=ed >

Subgroups: 404 in 242 conjugacy classes, 140 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C4×C8, C8⋊C4, D4⋊C4, Q8⋊C4, C4.Q8, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C82M4(2), C23.36D4, C2×C4.Q8, C4×SD16, Q16⋊C4, D8⋊C4, C23.33C23, C2×C4○D8, C42.281C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, C24, C4×D4, C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, D4○SD16, C42.281C23

Smallest permutation representation of C42.281C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 15 27 23)(2 16 28 24)(3 13 25 21)(4 14 26 22)(5 11 35 31)(6 12 36 32)(7 9 33 29)(8 10 34 30)(17 42 49 62)(18 43 50 63)(19 44 51 64)(20 41 52 61)(37 53 57 45)(38 54 58 46)(39 55 59 47)(40 56 60 48)
(1 37 3 39)(2 38 4 40)(5 52 7 50)(6 49 8 51)(9 43 11 41)(10 44 12 42)(13 47 15 45)(14 48 16 46)(17 34 19 36)(18 35 20 33)(21 55 23 53)(22 56 24 54)(25 59 27 57)(26 60 28 58)(29 63 31 61)(30 64 32 62)
(1 11 27 31)(2 12 28 32)(3 9 25 29)(4 10 26 30)(5 23 35 15)(6 24 36 16)(7 21 33 13)(8 22 34 14)(17 58 49 38)(18 59 50 39)(19 60 51 40)(20 57 52 37)(41 53 61 45)(42 54 62 46)(43 55 63 47)(44 56 64 48)
(1 31 27 11)(2 12 28 32)(3 29 25 9)(4 10 26 30)(5 23 35 15)(6 16 36 24)(7 21 33 13)(8 14 34 22)(17 46 49 54)(18 55 50 47)(19 48 51 56)(20 53 52 45)(37 41 57 61)(38 62 58 42)(39 43 59 63)(40 64 60 44)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15,27,23)(2,16,28,24)(3,13,25,21)(4,14,26,22)(5,11,35,31)(6,12,36,32)(7,9,33,29)(8,10,34,30)(17,42,49,62)(18,43,50,63)(19,44,51,64)(20,41,52,61)(37,53,57,45)(38,54,58,46)(39,55,59,47)(40,56,60,48), (1,37,3,39)(2,38,4,40)(5,52,7,50)(6,49,8,51)(9,43,11,41)(10,44,12,42)(13,47,15,45)(14,48,16,46)(17,34,19,36)(18,35,20,33)(21,55,23,53)(22,56,24,54)(25,59,27,57)(26,60,28,58)(29,63,31,61)(30,64,32,62), (1,11,27,31)(2,12,28,32)(3,9,25,29)(4,10,26,30)(5,23,35,15)(6,24,36,16)(7,21,33,13)(8,22,34,14)(17,58,49,38)(18,59,50,39)(19,60,51,40)(20,57,52,37)(41,53,61,45)(42,54,62,46)(43,55,63,47)(44,56,64,48), (1,31,27,11)(2,12,28,32)(3,29,25,9)(4,10,26,30)(5,23,35,15)(6,16,36,24)(7,21,33,13)(8,14,34,22)(17,46,49,54)(18,55,50,47)(19,48,51,56)(20,53,52,45)(37,41,57,61)(38,62,58,42)(39,43,59,63)(40,64,60,44)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15,27,23)(2,16,28,24)(3,13,25,21)(4,14,26,22)(5,11,35,31)(6,12,36,32)(7,9,33,29)(8,10,34,30)(17,42,49,62)(18,43,50,63)(19,44,51,64)(20,41,52,61)(37,53,57,45)(38,54,58,46)(39,55,59,47)(40,56,60,48), (1,37,3,39)(2,38,4,40)(5,52,7,50)(6,49,8,51)(9,43,11,41)(10,44,12,42)(13,47,15,45)(14,48,16,46)(17,34,19,36)(18,35,20,33)(21,55,23,53)(22,56,24,54)(25,59,27,57)(26,60,28,58)(29,63,31,61)(30,64,32,62), (1,11,27,31)(2,12,28,32)(3,9,25,29)(4,10,26,30)(5,23,35,15)(6,24,36,16)(7,21,33,13)(8,22,34,14)(17,58,49,38)(18,59,50,39)(19,60,51,40)(20,57,52,37)(41,53,61,45)(42,54,62,46)(43,55,63,47)(44,56,64,48), (1,31,27,11)(2,12,28,32)(3,29,25,9)(4,10,26,30)(5,23,35,15)(6,16,36,24)(7,21,33,13)(8,14,34,22)(17,46,49,54)(18,55,50,47)(19,48,51,56)(20,53,52,45)(37,41,57,61)(38,62,58,42)(39,43,59,63)(40,64,60,44) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,15,27,23),(2,16,28,24),(3,13,25,21),(4,14,26,22),(5,11,35,31),(6,12,36,32),(7,9,33,29),(8,10,34,30),(17,42,49,62),(18,43,50,63),(19,44,51,64),(20,41,52,61),(37,53,57,45),(38,54,58,46),(39,55,59,47),(40,56,60,48)], [(1,37,3,39),(2,38,4,40),(5,52,7,50),(6,49,8,51),(9,43,11,41),(10,44,12,42),(13,47,15,45),(14,48,16,46),(17,34,19,36),(18,35,20,33),(21,55,23,53),(22,56,24,54),(25,59,27,57),(26,60,28,58),(29,63,31,61),(30,64,32,62)], [(1,11,27,31),(2,12,28,32),(3,9,25,29),(4,10,26,30),(5,23,35,15),(6,24,36,16),(7,21,33,13),(8,22,34,14),(17,58,49,38),(18,59,50,39),(19,60,51,40),(20,57,52,37),(41,53,61,45),(42,54,62,46),(43,55,63,47),(44,56,64,48)], [(1,31,27,11),(2,12,28,32),(3,29,25,9),(4,10,26,30),(5,23,35,15),(6,16,36,24),(7,21,33,13),(8,14,34,22),(17,46,49,54),(18,55,50,47),(19,48,51,56),(20,53,52,45),(37,41,57,61),(38,62,58,42),(39,43,59,63),(40,64,60,44)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4L4M···4X8A8B8C8D8E···8J
order12222222224···44···488888···8
size11112244442···24···422224···4

44 irreducible representations

dim11111111112224
type+++++++++++
imageC1C2C2C2C2C2C2C2C2C4D4D4C4○D4D4○SD16
kernelC42.281C23C82M4(2)C23.36D4C2×C4.Q8C4×SD16Q16⋊C4D8⋊C4C23.33C23C2×C4○D8C4○D8C22⋊C4C4⋊C4C2×C4C2
# reps112142221162244

Matrix representation of C42.281C23 in GL6(𝔽17)

1300000
0130000
004400
0091300
00001313
000084
,
1600000
0160000
00161600
002100
00001616
000021
,
620000
7110000
000063
00001111
006300
00111100
,
1600000
610000
00001616
000001
001100
0001600
,
1600000
0160000
000010
000001
0016000
0001600

G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,9,0,0,0,0,4,13,0,0,0,0,0,0,13,8,0,0,0,0,13,4],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,2,0,0,0,0,16,1,0,0,0,0,0,0,16,2,0,0,0,0,16,1],[6,7,0,0,0,0,2,11,0,0,0,0,0,0,0,0,6,11,0,0,0,0,3,11,0,0,6,11,0,0,0,0,3,11,0,0],[16,6,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,16,0,0,16,0,0,0,0,0,16,1,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0] >;

C42.281C23 in GAP, Magma, Sage, TeX

C_4^2._{281}C_2^3
% in TeX

G:=Group("C4^2.281C2^3");
// GroupNames label

G:=SmallGroup(128,1684);
// by ID

G=gap.SmallGroup(128,1684);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,456,184,2019,521,248,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=a^2,d^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b*c,e*c*e^-1=b^2*c,d*e=e*d>;
// generators/relations

׿
×
𝔽